Aula 29 – Volume de pirâmides, cones e esferas

Objetivos

- Calcular o volume de uma pirâmide.
- Calcular o volume de um cone.
- Calcular o volume de uma esfera.

Introdução

Sabemos que se cortarmos um prisma ou um cilindro por um plano paralelo à base, a seção plana obtida é congruente à base. Essa propriedade nos permitiu aplicar o Princípio de Cavalieri na determinação do volume de prismas e cilindros. Com o intuito de utilizar esse princípio na determinação do volume de pirâmides e cones, precisaremos determinar seções planas quando cortamos esses sólidos por planos paralelos às suas bases.

Seções planas de pirâmides e cones

A seguinte proposição será de grande utilidade na determinação das seções planas paralelas às bases de pirâmides e cones.

Proposição 1

Sejam α e α' planos paralelos e P um ponto não situado entre α e α' . Sejam d e d' as distâncias de P a α e α' , respectivamente. Para todo ponto $A \in \alpha$, seja $A' = \overrightarrow{PA} \cap \alpha'$ (**Figura 29.1**). Então

$$\frac{m(PA)}{m(PA')} = \frac{d}{d'} \ , \ \text{para todo} \ A \in \alpha.$$

Prova:

Seja r a reta passando por P e perpendicular aos planos α e α' . Sejam $B = r \cap \alpha$ e $B' = r \cap \alpha'$ (**Figura 29.1**). Por definição de distância de ponto a plano, temos d = m(PB) e d' = m(PB'). Trace os segmentos BA e B'A'.

Como \overrightarrow{AB} e $\overrightarrow{A'B'}$ estão em um mesmo plano (o plano determinado por \overrightarrow{PA} e \overrightarrow{PB}) e α e α' são paralelos, temos $\overrightarrow{AB}/\overrightarrow{A'B'}$. Os triângulos PBA e PB'A'são semelhantes e, consequentemente,

$$\frac{m(PA)}{m(PA')} = \frac{m(PB)}{m(PB')} = \frac{d}{d'}$$

Q.E.D.

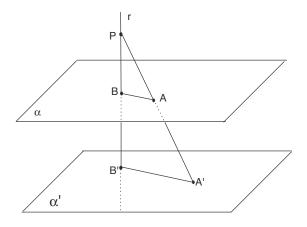


Figura 29.1: Proposição 1.

Considere agora uma pirâmide ABCD e seja h a sua altura em relação à face BCD. Lembre-se que h é a distância de A ao plano α que contém BCD. Seja α' um plano paralelo a α e que corta a pirâmide segundo o triângulo B'C'D' (veja a **Figura 29.2**). Chame de h' a distância de A ao plano α' .

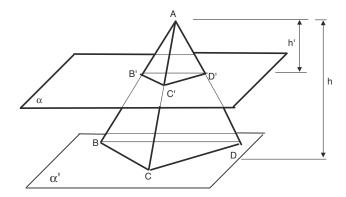


Figura 29.2: Seção paralela à base de uma pirâmide triangular.

Pela proposição 1 temos

$$\frac{m(AB')}{m(AB)} = \frac{m(AC')}{m(AC)} = \frac{m(AD')}{m(AD)} = \frac{h'}{h}.$$

Pelo segundo caso de semelhança estudado na Aula 10, temos que $AB'C' \sim ABC$, $AC'D' \sim ACD$ e $AB'D' \sim ABD$ com razão de semelhança $\frac{h'}{h}$. Logo,

$$\frac{m(B'C')}{m(BC)} = \frac{m(C'D')}{m(CD)} = \frac{m(B'D')}{m(BD)} = \frac{h'}{h}.$$

Segue do terceiro caso de semelhança estudado na aula 10 $B'C'D'\sim BCD$ (com razão de semelhança $\frac{h'}{h}).$

Conclui-se que

$$\frac{\text{Área}(B'C'D')}{\text{Área}(BCD)} = \left(\frac{h'}{h}\right)^2$$

Provamos, assim, o seguinte resultado:

Proposição 2

Seja ABCD uma pirâmide de altura h em relação à face BCD. Seja α' um plano paralelo ao plano da face BCD e que corta a pirâmide segundo um triângulo B'C'D'. Chame de h' a altura da pirâmide AB'C'D' em relação a B'C'D'. Então B'C'D' é semelhante a BCD e

$$\frac{\text{Área}(B'C'D')}{\text{Área}(BCD)} = \left(\frac{h'}{h}\right)^2.$$

Usando as mesmas idéias utilizadas na prova da proposição acima, podemos provar a seguinte proposição:

Proposição 3

Considere um cone C com vértice em A e cuja base é um círculo Γ de raio r e seja α' um plano paralelo ao plano da base e que é secante a C. Chame de h a altura do cone e de h' a distância de A ao plano α' (veja **Figura 29.3**). Então $\Gamma' = C \cap \alpha'$ é um círculo de raio $r' = \frac{h'}{h}r$.

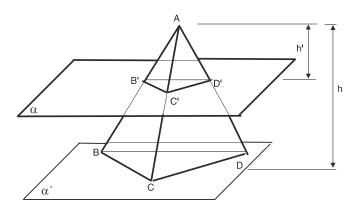


Figura 29.3: Seção de um cone por um plano paralelo à base.

Como consequência,

$$\frac{\operatorname{Área}(\Gamma')}{\operatorname{Área}(\Gamma)} = \left(\frac{h'}{h}\right)^2.$$

A prova desta proposição será deixada como exercício (veja exercício 27 desta aula).

Cálculo do volume de uma pirâmide

Como consequência da proposição 2, provaremos a seguinte proposição:

Proposição 4

Se dois tetraedros (pirâmides triangulares) têm a mesma altura e mesma área da base, então eles têm o mesmo volume.

Prova:

Sejam ABCD e EFGH dois tetraedros tais que Área (BCD) = Área (FGH) e tais que as alturas em relação às bases BCD e FGH são iguais a h. Considere que as duas pirâmides estão situadas sobre um plano α . Seja α' um plano paralelo a α e que secciona as pirâmides segundo os triângulos B'C'D' e F'G'H' (veja a **Figura 29.4**).

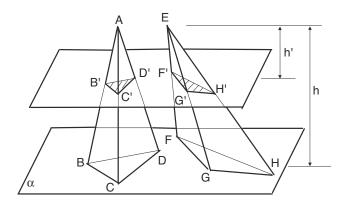


Figura 29.4: Tetraedros de mesma altura e mesma área da base.

Usando a proposição 2, temos

$$\frac{\text{Área}(B'C'D')}{\text{Área}(BCD)} = \left(\frac{h'}{h}\right)^2 = \frac{\text{Área}(F'G'H')}{\text{Área}(FGH)}$$

para todo plano α' paralelo a α e secante aos dois tetraedros. Pelo Princípio de Cavalieri, conclui-se que ABCD e EFGH têm o mesmo volume.

Q.E.D.

Determinaremos, agora, a fórmula para o cálculo do volume de uma pirâmide triangular.

Considere um prisma triangular reto ABCDEF. Lembre-se que já sabemos calcular o seu volume. A idéia será dividir o prisma em três tetraedros de mesmo volume. Acompanhe as divisões pela **Figura 29.5**.

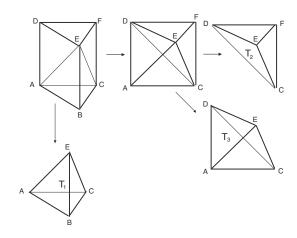


Figura 29.5: Divisão do prisma em três tetraedros.

Primeiramente, divida o prisma no tetraedro EABC e na pirâmide EDACF através do plano contendo os pontos E, A e C. Em seguida, divida a pirâmide EDACF nos tetraedros EDFC e EDAC, através do plano contendo os pontos D, E e C. O nosso prisma ficou assim dividido nos tetraedros $T_1 = EABC$, $T_2 = EDFC$ e $T_3 = EDAC$. Mostraremos agora que T_1 , T_2 e T_3 têm o mesmo volume.

Em primeiro lugar, considere T_2 e T_3 com bases DFC e DAC. Como DACF é um retângulo, a diagonal DC divide DACF em dois triângulos congruentes, que são DAC e DFC. Logo, T_2 e T_3 têm bases de mesma área. Além disso, como as bases DFC e DAC estão em um mesmo plano (o plano do retângulo DACF), tem-se que as alturas de E em relação às bases DFC e DAC são iguais. Assim, T_2 e T_3 têm também a mesma altura. Usando a proposição 4, conclui-se que $Vol(T_2) = Vol(T_3)$.

Considere agora T_1 e T_2 com bases ABC e DEF, respectivamente. Como ABC e DEF são congruentes (pois são bases do prisma ABCDEF), tem-se que Área(ABC)=Área (DEF). Além disso, como m(EB) é a altura de T_1 relativa à base ABC, m(FC) é a altura de T_2 relativa à base DEFe $EB \equiv FC$, segue que T_1 e T_2 têm também a mesma altura. Usando a proposição 4 desta aula, conclui-se que $Vol(T_1) = Vol(T_2)$.

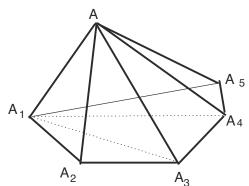
Portanto, o nosso prisma ABCDEF foi dividido em três tetraedros de mesmo volume: T_1 , T_2 e T_3 . Logo,

$$Vol(T_1) = Vol(T_2) = Vol(T_3) = \frac{1}{3}Vol(ABCDEF) = \frac{1}{3}\acute{A}rea(ABC)m(BE)$$

Provamos então o seguinte resultado:

O volume de uma pirâmide triangular é um terço do produto da área da base pela altura.

A partir da fórmula para o cálculo do volume de uma pirâmide triangular, podemos achar facilmente a fórmula para o volume de uma pirâmide qualquer. Seja S uma pirâmide de altura h com vértice em A e cuja base é um polígono $P = A_1 A_2 \dots A_n$. Essa pirâmide pode ser dividida nos n-2tetraedros: $AA_1A_2A_3$, $AA_1A_3A_4$, $AA_1A_{n-1}A_n$ (veja na **Figura 29.6** um caso particular em que P é um pentágono).



 A_2 A_3 Figura 29.6: Divisão de uma pirâmide pentagonal nos tetraedros $AA_1A_2A_3$, $AA_1A_3A_4$ e $AA_1A_4A_5$.

Observe que a altura de cada tetraedro é igual à altura de S. Logo,

$$Vol(S) = Vol(AA_1A_2A_3) + Vol(AA_1A_3A_4) + \dots + Vol(AA_1A_{n-1}A_n)$$

$$= \frac{1}{3} \text{Área}(A_1A_2A_3)h + \frac{1}{3} \text{Área}(A_1A_3A_4)h + \dots + \frac{1}{3} \text{Área}(A_1A_{n-1}A_n)h$$

$$= \frac{1}{3}h(\text{Área}(A_1A_2A_3) + \text{Área}(A_1A_3A_4) + \dots + \text{Área}(A_1A_{n-1}A_n)$$

$$= \frac{1}{3}h\text{Área}(P)$$

Assim, vale também

O volume de uma pirâmide é um terço do produto da altura pela área da base.

Cálculo do volume de um cone

Conhecendo a fórmula para o cálculo do volume de uma pirâmide, podemos achar a fórmula para o volume de um cone, utilizando as proprosições 2 e 3. Considere um cone C de altura h, vértice em A e base dada por um círculo Γ . No plano de Γ , considere um triângulo BCD de área igual à área de Γ e sobre ele construa uma pirâmide P de altura h (veja **Figura 29.7**).

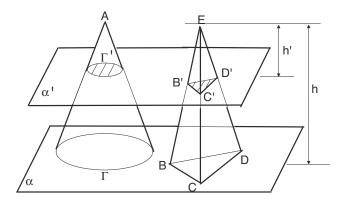


Figura 29.7: Seções paralelas às bases do cone e da pirâmide.

Para todo plano α' paralelo a α (o plano de Γ) e secante ao cone (e à pirâmide), sabemos das proposições 2 e 3 que as áreas de $\Gamma' = \alpha' \cap C$ e $B'C'D' = P \cap \alpha'$ satisfazem

$$\frac{\text{Área}(\Gamma')}{\text{Área}(\Gamma)} = \left(\frac{h'}{h}\right)^2 = \frac{\text{Área}(B'C'D')}{\text{Área}(BCD)}$$

sendo h' a distância de A (ou E) ao plano α' .

Como Área (Γ) = Área(BCD) por construção, segue que Área $(C \cap \alpha')$ = Área $(P \cap \alpha')$, para todo plano α' paralelo a α . Pelo Princípio de Cavalieri, conclui-se que

$$Vol(C) = Vol(P) = \frac{1}{3} \acute{\mathrm{A}} \mathrm{rea}(BCD) h = \frac{1}{3} \acute{\mathrm{A}} \mathrm{rea}(\Gamma) h$$

Provamos então que

O volume de um cone é um terço do produto da área da base pela altura.

Cálculo do volume de uma esfera

Buscaremos, agora, uma fórmula para o cálculo do volume de uma esfera. Com esse objetivo, recorde que se cortarmos uma esfera de raio r por um plano distando h do seu centro, obteremos um círculo de área igual a $\pi(r^2-h^2)$. Esse valor corresponde à área de uma coroa circular limitada por círculos de raios r e h. Isso sugere que para determinar o volume de uma esfera através do Princípio de Cavalieri, devemos construir um sólido, cujo volume saibamos calcular, tal que suas seções planas sejam coroas circulares de área $\pi(r^2 - h^2)$. Mostraremos, agora, como obter esse sólido. Para isso, considere que uma esfera de raio r esteja sobre um plano α e construa um cilindro reto de altura 2r e cuja base seja um círculo de raio r contido em α . Considere, ainda, dois cones, ambos com vértice no centro do cilindro, cujas bases sejam as bases do cilindro (veja a Figura 29.8).

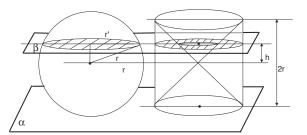


Figura 29.8: Anticlépsidra.

Mostraremos que o sólido compreendido entre o cilindro e os cones é o sólido desejado. Esse sólido é conhecido por anticlépsidra (veja na Figura **29.8** sua seção plana determinada por um plano β distando h do centro da esfera). A seção plana determinada na esfera tem, como sabemos, área igual a $\pi r'^2 = \pi (r^2 - h^2)$. A seção plana determinada na anticlépsidra é uma coroa circular, cujo raio maior é r e cujo raio menor é h (por quê?). Logo, sua área vale $\pi r^2 - \pi h^2 = \pi (r^2 - h^2)$. Assim, as seções planas da anticlépsidra determinadas por planos paralelos ao plano α têm a mesma área que as seções planas determinadas na esfera. Pelo Princípio de Cavalieri, conclui-se que o volume da esfera é igual ao volume da anticlépsidra. Observando que a altura de cada cone é r, tem-se

$$Vol(\text{esfera}) = Vol(\text{cilindro}) - 2Vol(\text{cone})$$

= $\pi r^2 \times 2r - 2\frac{1}{3}\pi r^2 \times r$
= $2\pi r^3 - \frac{2}{3}\pi r^3 = \frac{4}{3}\pi r^3$

Provamos, então, que

O volume de uma esfera de raio r é $V = \frac{4}{3}\pi r^3$.

Resumo

Nesta aula você aprendeu...

• A calcular o volume de pirâmides, cones e esferas.

Exercícios

- 1. Determine o volume e a área total de um tetraedro regular cuja aresta mede a.
- 2. Um recipiente, em forma de um tetraedro regular invertido de aresta medindo 1 m, está com água até a metade de sua altura, como mostra a Figura 29.9.

Figura 29.9: Exercício 2.

Invertendo o recipiente, como na **Figura 29.10**, qual deverá ser a altura do nível da água?

- 3. Uma pirâmide regular de base hexagonal tem altura $6\,cm$ e apótema igual a $9\,cm$. Determine o volume e a área lateral dessa pirâmide.
- 4. Uma pirâmide regular de base pentagonal tem volume de $500\,cm^3$ e o círculo inscrito na base tem raio igual a $\sqrt{3}\,cm$. Determine a medida da aresta lateral dessa pirâmide.

Figura 29.10: Exercício 2.

- 5. Duas pirâmides regulares, uma de base hexagonal e outra de base decagonal, têm a mesma altura e as arestas das bases são congruentes. Determine a razão entre os volumes dessas pirâmides.
- 6. Calcule o volume e a área total de um octaedro regular de aresta igual a $10 \, cm$.
- 7. Na **Figura 29.11**, ABCD é um tetraedro regular de volume V.



Figura 29.11: Exercício 7.

Se $m(BF) = \frac{1}{4}m(BC)$ e $m(BE) = \frac{1}{3}m(BD)$, determine o volume da pirâmide ABFE.

- 8. Prove que os segmentos que unem os vértices de uma pirâmide triangular aos baricentros das faces opostas se intersectam em um ponto e se dividem por esse ponto na razão $\frac{1}{3}$.
- 9. A que altura da base devemos cortar uma pirâmide por um plano paralelo à base para obtermos dois sólidos de mesmo volume?

- 10. Determine o volume do maior tetraedro que pode ser guardado dentro de um cubo de aresta a.
- 11. Prove que a soma das distâncias de um ponto interior de um tetraedro regular às suas faces é constante.
- 12. Um tetraedro regular está inscrito em um cone. Determine a razão entre o volume do tetraedro e o volume do cone.
- 13. Um copo cônico de papel foi feito a partir de um setor circular de 10 cm de raio e ângulo central de 108°. Calcule o volume do copo.
- 14. Um recipiente, com a forma de um cone invertido, tem 12 m de altura. Esse recipiente está completamente cheio com 27000 litros de água e 37000 litros de óleo. Determine a altura da camada de água.
- 15. Na **Figura 29.12**, ABCDEFGH é um cubo de aresta $a \in M$ é o ponto médio de AB.

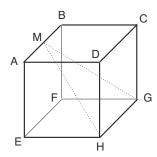


Figura 29.12: Exercício 15.

Determine a distância de F ao plano que contém M, H e G.

16. Um recipiente cilíndrico, de raio da base igual a $5\,m$ e altura igual a $15\,m$, está completamente cheio de água. Despeja-se toda a água em um sistema de dois cones invertidos, interligados por um duto de volume desprezível, como mostra a **Figura 29.13**.

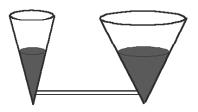


Figura 29.13: Exercício 16.

Sabendo que as alturas dos cones são iguais a 15 m e que os raios de suas bases valem 5 m e 10 m, respectivamente, determine a altura do nível da água.

- 17. Determine o volume de uma esfera, sabendo que a área da seção determinada por um plano que dista 4 cm do centro da esfera é de $9\pi cm^2$.
- 18. O raio de uma esfera mede $16 \, cm$. De um ponto P situado a $34 \, cm$ do centro da esfera, traçam-se retas tangentes à esfera, como na Figura 29.14.

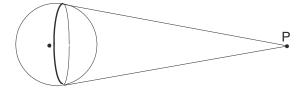


Figura 29.14: Exercício 18.

Prove que a uni \tilde{a} o dos segmentos com extremidades em P e nos pontos de tangência com a esfera é um cone reto e determine o volume desse cone.

- 19. Considere uma esfera de centro O e raio r e um ponto P situado a uma distância $\frac{r}{2}$ do centro da esfera. Determine a área da seção plana determinada por um plano que passa por P e forma um ângulo θ com a reta \overrightarrow{OP} .
- 20. Duas esferas tangentes exteriormente entre si tangenciam internamente uma esfera de raio R. Determine os raios das esferas tangentes internamente para que a soma de seus volumes seja o menor possível.

- 21. (ITA 1988) As arestas laterais de uma pirâmide regular de 12 faces têm comprimento l. O raio do círculo circunscrito ao polígono da base mede $\frac{\sqrt{2}}{2}l$. Então o volume dessa pirâmide é:
 - (a) $3\sqrt{2}l^3$ (b) $2l^3$ (c) $\frac{\sqrt{3}}{2}l^3$ (d) $\sqrt{2}l^3$ (e) $\frac{\sqrt{2}}{4}l^3$
- 22. (ITA 1990) Seja V o vértice de uma pirâmide com base triangular ABC. O segmento AV de comprimento unitário é perpendicular à base. Os ângulos das faces laterais no vértice V são todos de 45° . Desse modo, o volume da pirâmide será igual a:
 - (a) $\frac{1}{6}\sqrt{2\sqrt{2}-2}$ (b) $\frac{1}{6}\sqrt{2-\sqrt{2}}$ (c) $\frac{1}{3}\sqrt{2-\sqrt{2}}$
 - (d) $\frac{1}{6}\sqrt{2\sqrt{2}-1}$ (e) N.R.A.
- 23. (VUNESP, 1985) Em cada um dos vértices de um cubo de madeira se recorta uma pirâmide AMNP, onde M, N e P são os pontos médios das arestas, como se mostra na **Figura 29.15**.

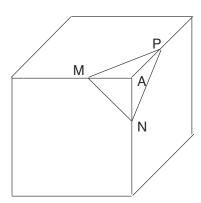


Figura 29.15: Exercício 23.

Se V é o volume do cubo, o volume do poliedro que resta ao retirar as oito pirâmides é:

- (a) $\frac{1}{2}V$ (b) $\frac{3}{4}V$ (c) $\frac{2}{3}V$ (d) $\frac{5}{6}V$ (e) $\frac{3}{8}V$
- 24. (CESGRANRIO 1991) Uma ampulheta é formada por dois cones retos iguais, com eixos verticais e justapostos pelo vértice, o qual tem um pequeno orifício que permite a passagem de areia da parte de cima para a parte de baixo. Ao ser colocada para marcar um intervalo de tempo, toda a areia está na parte de cima e, 35 minutos depois, a

altura da areia na parte de cima reduziu-se à metade, como mostra a Figura 29.16.

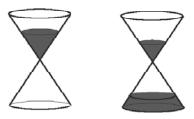


Figura 29.16: Exercício 24.

Supondo que em cada minuto a quantidade de areia que passa do cone de cima para o cone de baixo é constante, em quanto tempo mais toda a areia terá passado para a parte de baixo?

- (a) 5 minutos
- (b) 10 minutos
- (c) 15 minutos
- (d) 20 minutos

- (e) 30 minutos
- $25. \ (\mathrm{UFMG}$ $1992) \ \mathrm{Um}$ plano intersecta uma esfera segundo um círculo de diâmetro AB, como mostra a Figura 29.17.

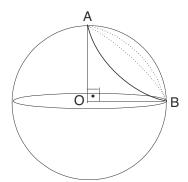


Figura 29.17: Exercício 25.

O ângulo $A\hat{O}B$ mede 90^o e o raio da esfera, $12\,cm$. O volume do cone de vértice O e base de diâmetro AB é:

- (a) 9π (b) $36\sqrt{2}\pi$
- (c) $48\sqrt{2}\pi$
- (d) $144\sqrt{2}\pi$
- (e) 1304π
- 26. Duas esferas de metal de raios 2r e 3r se fundem para formar uma única esfera. Determine o raio dessa nova esfera.
- 27. Prove a proposição 3.