

Bacharelado em Sistemas de Informação Disciplina: Linguagens Formais e Autômatos 2019.2 — Lista de exercícios 1

Ρ

Parte dos exercícios retirados da bibliografia da disciplina.
Revisão: Teoria de Conjuntos
Questão 1 Examine as descrições formais dos conjuntos a seguir para compreender quais elemente eles contêm, e escreva uma descrição curta e informal em português de cada conjunto:
(a) $\{1, 3, 5, 7, \ldots\}$
(b) $\{\ldots, -4, -2, 0, 2, 4, \ldots\}$
(c) $\{n n=2m \text{ para algum } m \text{ em } \mathbb{N}\}$
(d) $\{n n=2m \text{ para algum } m \text{ em } \mathbb{N}, \text{ e } n=3k \text{ para algum } k \text{ em } \mathbb{N}\}$
(e) $\{w w \text{ \'e uma string de 0s e 1s e } w \text{ \'e igual ao reverso de } w\}$
(f) $\{n n \text{ \'e inteiro e } n=n+1\}$
Questão 2 Escreva descrições formais para os conjuntos a seguir:
(a) O conjunto contendo os números 1, 10, e 100
(b) O conjunto contendo todos os inteiros que são maiores do que 5
$\left(c\right)$ O conjunto contendo todos os números naturais que são menores do que 5
(d) O conjunto contendo a string aba
(e) O conjunto contendo a string vazia
(f) O conjunto contendo absolutamente nada
(a) A é subconjunto de B ? $(A \subseteq B$?)
(b) B é subconjunto de A ? $(B \subseteq A$?)
(c) Quais elementos compõem $A \cup B$?
(d) Quais elementos compõem $A \cap B$?
(e) Quais elementos compõem $A \times B$?
(f) Quais elementos compõem B^2 ?
(g) Qual é o conjunto potência de $B(2^B)$?

Questão 4.....

Se A tem a elementos e B tem b elementos, quantos elementos tem $A \times B$? Explique sua resposta.

Questão 5.....

Se C é um conjunto com c elementos, quantos elementos tem o conjunto potência de C? Explique sua resposta.

Questão 6.....

Seja X o conjunto $\{1,2,3,4,5\}$ e Y o conjunto $\{6,7,8,9,10\}$. A função unária $f:X\to Y$ e a função binária $g:X\times Y\to Y$ estão descritas nas tabelas a seguir.

n	$\int f(n)$	g	6	7	8	9	10
1	6			10			
2	7			8			
3	6			7			
4	7			8			
5	6 7 6 7 6	5	6	6	6	6	6

- (a) Quais são o domínio e contradomínio de f e g?
- (b) Qual é o valor de f(2)?
- (c) Qual é o valor de g(2, 10)?
- (d) Qual é o valor de q(4, f(4))?

Questão 7....

Seja $A = \{1, 2, 3\}$, e considere as relações de A sobre si mesmo listadas abaixo. Para cada uma, determine se ela é reflexiva, simétrica, antissimétrica e/ou transitiva. Determine também quais destas relações são, também, funções:

- (a) $R_1 = \{(1,1), (2,2), (3,3)\}$
- (b) $R_2 = \{(1,3), (2,2), (3,1)\}$
- (c) $R_3 = \{(1,1), (1,3), (2,2), (3,1), (3,3)\}$
- (d) $R_4 = \{(1,2), (2,3), (3,1)\}$
- (e) $R_5 = \{(1,2), (1,3), (2,1)\}$

Questão 8.....

Represente cada uma das relações a seguir na forma de grafo:

- (a) Relação $\{(1,2),(1,3),(2,1),(2,2),(3,2)\}$, sobre o conjunto $\{1,2,3,4\}$
- (b) Relação \leq sobre o conjunto $\{-1, 0, \pi, 42, 8000\}$
- (c) Relação "é divisível por" sobre o conjunto {1, 2, 3, 4, 5, 6, 7}
- (d) Relação "moraram juntos em algum episódio na série The Big Bang Theory" sobre o conjunto {Leonard, Sheldon, Penny, Amy}
- (e) Relação "ganha de" no jogo "pedra, papel, tesoura, lagarto, Spock", sobre o conjunto {pedra, papel, tesoura, lagarto, Spock}
- (f) Outra relação de sua preferência

¹Se você não conhece The Big Bang Theory, escolha sua série ou filme preferido =)

Questão 9.....

Considere a representação de relações na forma de grafos. Descreva, de maneira informal, como determinar através desta representação se uma relação possui cada uma das seguintes propriedades: (i) reflexividade; (ii) simetria; (iii) antissimetria e (iv) transitividade.

Teoria da Computação: Conceitos Básicos

Considere os alfabetos $\Sigma_1 = \{a, b, c, d, e\}$ e $\Sigma_2 = \{a, r, s, t\}$ e as sequências de símbolos $p_1 = \text{arara}, p_2 = \text{acabada} e p_3 = \text{rsrsrss}.$ Determine se as afirmações abaixo são verdadeiras ou falsas:

- (a) p_1 é uma palavra sobre Σ_1
- (b) p_2 é uma palavra sobre Σ_1
- (c) $p_3 \in \Sigma_2^*$
- (d) $\underline{\mathtt{rs...rs}}_{4444 \text{ vezes}} \in \Sigma_2^*$
- (e) rsrsrss... $\in \Sigma_2^*$
- (f) $\varepsilon \in \Sigma_1$
- (g) $\varepsilon \in \Sigma_2^*$
- (h) $\emptyset \in \Sigma_1$
- (i) $|p_2| = 7$
- (i) $|\varepsilon| = 0$
- (k) ar é prefixo de p_1
- (l) aba é sufixo de p_2
- (m) acbda é subpalavra de p_2

- (n) $p_1 p_2 \in \Sigma_1^*$
- (o) $ar \cdot ara = ar ara$
- (p) $p_1p_2 = araraacabada$
- (q) $p_3\varepsilon = p_3$
- (r) $rs^4 = p_3$
- (s) $(rs)^4 = p_3$
- (t) $p_3^3 = rsrsrsrsrsrsrsrsrsrsrs$
- (u) $p_1^R = p_1$
- (v) $p_1 p_3 \in \Sigma_1^* \cdot \Sigma_2^*$
- (w) $p_1 p_2 \in \Sigma_2^* \cdot \Sigma_1^*$
- (x) strada $\in \Sigma_2^* \cdot \Sigma_1^*$
- (y) arrasada $\in \Sigma_1^* \cdot \Sigma_2^*$
- (z) aaaaaaaaaaa $\in \Sigma_1^* \cap \Sigma_2^*$

Questão 11

Sejam L_1 e L_2 duas linguagens sobre o alfabeto Σ . Determine as seguintes linguagens em função de L_1^R e L_2^R :

- (a) $(L_1 \cdot L_2)^R$ (b) $(L_1 \cup L_2)^R$ (c) $\overline{L_1}^R$ (d) $(L_1^*)^R$

Descreva formalmente a linguagem correspondente às strings que representam horas em formato numérico com hora, minuto e segundo (por exemplo: 21:25:20). Apresente o alfabeto sobre o qual esta linguagem foi construída.

Questão 13

Descreva formalmente a linguagem formada pelos nomes de variáveis permitidos em Java².

Questão 14

Descreva formalmente a linguagem correspondente aos palíndromos³ no alfabeto latino.

²Considere neste exercício apenas nomes que sigam a convenção Java: são nomes válidos quaisquer sequência de dígitos e letras, sem restrição de comprimento, desde que iniciados por uma letra. Ignore a existência de palavras reservadas no Java.

 $^{^3}$ Um *palíndromo* é uma palavra que fica igual se lida da esquerda para a direita ou vice-versa. Ignore letras maiúsculas neste exercício.